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Contribution to the Sensitivity Coefficients Analysis
in the Extended Dynamic Plane Source (EDPS)
Method

Svetozár Malinarič1

This work reports on a method for measuring thermophysical properties
(thermal conductivity and diffusivity) of materials. The theory of the dynamic
plane source method and experimental apparatus is described. The contribu-
tion of this work is the determination of the time interval within which the
fitting procedure should be applied. A new algorithm for sensitivity coeffi-
cient analysis is presented, and the results are compared with those of a
difference analysis of experiment modelling.
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1. INTRODUCTION

Development of new materials and advancement of materials engi-
neering have influenced the development of measurement methods of phys-
ical properties over the last several decades. Thermophysical properties are
some of the most important material properties. Progress of electronics
and computer technologies has resulted in a transition from stationary to
unstationary methods. Transient methods [1] are based on generation of a
dynamic temperature field inside the specimen. The measuring process can
be described as follows. The temperature of the specimen is stabilized and
uniform. Then the dynamic heat flow in the form of a pulse or step-wise
function is generated inside the specimen. From the temperature response
to this small disturbance, the thermophysical parameters of the specimen
can be determined.
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2. EXPERIMENTAL

The extended dynamic plane source (EDPS) method is arranged for
one-dimensional heat flow into a finite sample. The configuration of the
experiment is obvious from Fig.1. The plane source (PS) disc, which simul-
taneously serves as the heat source and thermometer, is made of a nickel
film covered from both sides with a kapton layer. The heat in the form
of a step-wise function is produced by the passage of an electrical cur-
rent through the PS disc. Two identical samples of cylindrical shape cause
symmetrical division of the heat flow into a very good heat conducting
material (heat sink), which provides isothermal boundary conditions of the
experiment. This method appears to be useful for simultaneous determina-
tion of thermal diffusivity a and thermal conductivity λ of low thermally
conducting materials.

Figure 2 shows the theoretical temperature function which is a solu-
tion of the partial differential equation with boundary and initial con-
ditions corresponding to the experimental arrangement. The temperature
function is given by [2]
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q is the heat current density, λ is the thermal conductivity and � is the
characteristic time of the sample given by

�= l2/a, (3)
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Fig. 1. Setup of the experiment.
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Fig. 2. Temperature function–temperature increase as a func-
tion of time.

where l is the thickness and a is the thermal diffusivity of the specimen.
Parameter β describes the heat sink imperfection, and ierfc is the error
function integral [3].

The principle of the method is based on fitting the theoretical tem-
perature function over the experimental points. The fitting procedure is
based on a linear regression [2,4]. The plot of experimental points Ti ver-
sus F(�, ti), calculated using Eq. (2), should be a straight line if � has
its proper value. Equation (1) predicts a zero intercept but real measure-
ments showed a nonzero offset temperature value τ , defined as the addi-
tional increase in the temperature of the PS disc due to its imperfections.
The proper value of � can be found by using an iterative procedure such
that we will change the characteristic time � until the correlation coeffi-
cient calculated from Ti and F (�, ti) reaches its maximum. The slope of
this straight line gives λ while the iterated � gives a.

3. SENSITIVITY COEFFICIENTS ANALYSIS

The sensitivity coefficient is a measure of the change in temperature
due to the variation of the estimated parameters. The sensitivity coefficient
βp is defined by [4]

βp =p
∂T (t)

∂p
, (4)

where p is the parameter to be analyzed and T (t) is the temperature
function. The fitting procedure does not work properly when sensitivity
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coefficients are small or linearly dependent on each other. Therefore, an
analysis of the sensitivity coefficients determines the time window in which
the evaluation technique can be applied to the temperature response.

In this section we will concentrate on investigating the linear depen-
dence of the sensitivity coefficients. As mentioned in the previous section,
there are three parameters whose values should be estimated. They are two
thermophysical parameters of the material, λ and a, and the baseline of
temperature function τ . Hence, the temperature function in Eq. (1) can be
expressed as

T (t, a, λ, τ )= q
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and the sensitivity coefficients βa , βλ, and βτ can be calculated using Eq.
(4). Figure 3 shows the temperature function and the sensitivity coeffi-
cients βλ and βa as a function of time. The third coefficient attains a
constant value βτ = τ . Since the sensitivity coefficients are functions of
one variable t, the linear dependence can be investigated using Wronsky’s
determinant [5] given by the form,

W (t)=
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Fig. 3. Temperature function and sensitivity coefficients βλ and βa versus nondimen-
sional time scale t/�.
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The sensitivity coefficients are linearly dependent when the determinant,
Eq. (6), is equal to zero. If the functions are represented by equi-spaced
time series [6], the derivations can be estimated by the relation,

f ′
i = fi+1 −fi

�t
, (7)

where �t is the time interval between samples. Then the determinant W
takes on a very simple form,

Wi = c ·

∣∣∣∣∣∣∣
βai βλi 1

βai+1 βλi+1 1

βai+2 βλi+2 1

∣∣∣∣∣∣∣ , (8)

where c is a constant. Equation (8) in the form of a time series determines
the time interval, where the sensitivity coefficients are not linearly depen-
dent. As seen in Fig. 4, the function W acquires nonzero values in the
interval (0.07�,�).

4. DIFFERENCE ANALYSIS

In the previous section we used sensitivity coefficient analysis to
determine the time window in which the fitting procedure should be
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Fig. 4. Values of determinant W and relative differences of the parameters a (x) and λ

(+) versus nondimensional time scale t/�.
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applied to get reliable values of thermophysical parameters a and λ. The
difference analysis [7] is another method for the time interval determi-
nation. It is based on fitting the theoretical temperature function to the
points in the time interval (tB, tB + tS), where tB and tS designate the
beginning and the size of the interval, respectively (Fig. 2). If tB is suc-
cessively increased while tS is kept constant, a series of parameter values
is obtained. If the time interval (tB, tB + tS) is not suitable for the estima-
tion of the parameters a and λ the results of fitting are unreliable and the
plot shows considerable scatter.

In order to verify the theory described in the preceding section, we
decided to construct a mathematical model of the experiment. In the first
stage the points were computed using Eq. (5). Simulating the measure-
ment on polymethylmetacrylate (PMMA), the following values were used:
l = 0.003 m, q = 1000 W · m−2, λ= 0.19 W · m−1·K−1, a = 0.12 · 10−6 m2 ·
s−1, τ = 0.2 K, and β = −0.954. The sample period was T = 1 s, and the
number of samples n = 300. Noise was added by rounding the tempera-
ture coordinate of the points to 7 valid numbers. Then the points were
processed by difference analysis with the smallest possible time interval.
If we have three unknown parameters in Eq. (5), we need at least three
points for evaluation. In this situation we solve a system of three equa-
tions instead of fitting. Figure 4 shows a plot of the relative differences,
which are defined by the formula,

Rx =
∣∣∣∣x −x0

x0

∣∣∣∣ , (9)

where x0 is the value originally used in the model and x is the value
calculated using difference analysis. If the time interval is not suitable for
estimation of parameters a and λ, the results are unreliable and relative
differences are far from zero.

5. CONCLUSIONS

Figure 4 illustrates the excellent consistency between sensitivity coeffi-
cient analysis results, represented by the function W, and difference analy-
sis, represented by relative differences of both parameters a and λ. In
the interval (0.07�,�) determinant W acquires nonzero values, so that
the sensitivity coefficients are not linearly dependent, the fitting procedure
works properly, and computed values are nearly the same as values orig-
inally used in the model. Hence, in this time interval, the relative differ-
ences of the parameters a and λ, calculated using Eq. (9), are expected
to be zero. The lower are the values of determinant W, the higher is the
scatter of computed values of thermophysical parmeters a and λ.
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